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THE EXISTENCE AND CALCULATION OF SOLUTIONS OF CERTAIN
INTEGRO-DIFFERENTIAL EQUATIONS IN SEVERAL DIMENSIONS

INTRODUCTION

In this paper, boundary and initial value problems will be solved for

linear integro-differential equations, in several dimensions, of a type inf

cluding linearized forms of Boltzmann's equation. The methods of solution

are based on finite differences and are thus suitable for calculation.

These methods are indirect, for our difference scheme is proved to

converge, not for the original problem, but for a modification of it, whose

solution approximates that of the original. A better difference scheme, or

a better proof of convergence, might eliminate the need to modify the original

problem. This need to modify the problem, however, may be real, desirable

in numerical practice as well as in theory.

Most discussions of the integro-differential equations treated here

occur in the context of neutron transport theory, of which a comprehensive

account is to be had in B. Davison's book [1]. Calculation techniques in

transport theory are also surveyed in R. D. Richtmyer's book [2] and in a

subsequent paper [3] of E. H. Bareiss. The first proof that general multi-

dimensional problems resembling ours have solutions was given by semi-group

methods by K. J8rgens [4]. We do not refer here to the extensive literature

on problems in one or two dimensions.
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1. Statement of problem. Notation. Main Results. Let

IX I < C, r , 1, ... , d,

designate a d-dimensional cube of edge 2C, the symbol x(xl,x 2 , ...,xd)

referring to any of its points. Let y (yI, "'"Y.) and y' = (y ,...,

denote any d-dimensional vectors and dy' = dy{ ...dyA the d-dimensional

element of volume, and let t be an independent variable on the semi-axis

t > 0. The equations considered are those of the form

1.1 ut  1 2iYrUx + c(x,y,t)u = K(x,y,ty') u(x,y',t)dy' + g(x,yt)
r-I r x

with coefficient c(x,y,t) and inhonegeneous part g(x,y,t) defined in a

(2n+l)-dimensional cylindrical drum,

ST: x c ;C , 0 < t < T, -00 < Ys < oD (T-const. > 0), s 1- , ... #d i

ST s

and with kernel K(x,y,t,y') defined in a (3n+l)-dimensional cylinder

over ST'

T x,y,t)F ST, -OD< Ys < 00, s 1, d.

The domain of integration here has been taken as the entire d-dimensional

y'-space, although a bounded portion, or a lower dimensional subset, would

have been equally acceptable. Unlike Jorgens, we do not exclude a neighbor-

hood of the origin from the domain of integration.

Later on, S0 will denote the base, t = 0, of ST0. S( 0 ) will be

the set of points of ST on any of the planes Yr = 0, r = 1,..., d. For

(E)  ( 0 )

I1> O S will be an e-neighborhood of S(o in Sr.

2
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T will denote an (n+l)-dimensional cylindrical drum with base
T

namely

x T : x , 0 <t_<T

By () will be meant the set of points of J T on any" of the planesBYT
Yr t: 0 , r i . ., d .

The initial condition imposed is of the form

1.2 u(x,y,O) = O(x,y)

The boundary condition is

1.3 u(I,y,t) = 0 when E yjNj(X) < 0

where (N.(x)) denotes the outward normal to at x, a point of the boundary

not on an edge. This boundary condition can be written as

1.3' u(x,y,t) = 0 for x e Br,y

where

: Ix Ixs-C, s jr

r,y r

-C,if Yr > 0

is an appropriate one of the two faces

B: x=C, IxsI<C for s4r,

B. x =-C, IXs_ C for s r,

of, normal to the x -axis. When y = 0, no boundary condition is imposed,r r

and B in this case is to be taken as empty. For YlY2 " ' ' y d 4 0, the
r,y YY"Y

B (r=l,...,d), d mutually perpendicular planes in d-dimensional space,
r,y

3
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all intersect in one point.

By

xs I <C, xs 4 , for s r
BI
r,y , C ~ >
Br'y" Xr- C if Yr > 0

-- C if y < 0
r

--C ifY = 0

we shall denote the face ofA normal to the x -axis on which u goes un-
r

prescribed.

U will denote the union of the planes ys = 0, s = 1,..., d; the

equation of U is YI'''yd = 0.

We shall seek, depending on the precise hypotheses, either "weak" or

"strong" solutions of 1.1, 1.2, 1.3.

DEFINITION I: By a "strong" solution in ST  will be meant a bounded

function u(x,y,t) that, for constant x,t, is measurable with respect to

y, for constant y j U is absolutely continuous with respect to t,x in

fa -T tT ( O ), fulfills the initial and boundary conditions 1.2 and 1.3,

and satisfies 1.1 at almost all points of ST.

"Weak" solutions are functions that satisfy the required conditions in

a certain integral sense. To arrive at an appropriate formulation, imagine

u to satisfy 1.1, 1.2, and 1.3 strictly, and this and the other functions

involved to admit the various operations we shall perform. We first multiply

equation 1.1 by T(x,y,t)F'(u), where F(u) and m(xy,t) are continu-

ously differentiable functions for all values of their arguments. Then we

integrate over an arbitrary polyhedral domain D contained in the drum T.

Letting D denote the boundary of D and (vi,vt)il,...,d the outward

4
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normal to this boundary, equation 1.1 becomes, upon integration by parts,

J ) F(u)(vt + r Yr r)dS- SF(u)(it + Iyr )x dxdtt r r

D D

1.4 J ) F'(u) -cu + Kudy' + g dxdt

D

Now we specialize D to , < r < T, take F(u) = u, and impose the

condition

1.5 @ = 0 on Bry, r = 1, ... , d.

In view of 1.3' and 1.2, the integral over D in 1.4 thereby becomes

and relation 1.4

Jqudxjt~ = J dx + q u( +t +Yr1x )dxdt
r

1.6r
+ , q)-cu+ fKudyI + g)dxdt

We thus arrive at

DEFINITION 2: u(x,y,t) is called a "weak" solution of 1.1, 1.2, 1.3

if relation 1.6 holds for all vectors y, all T in the interval (O,T),

and all functions 9(x,y,t) continuously differentiable in ST that satisfy

1.5.

Appropriate function classes for u and the other quantities involved

will be indicated below.
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Under rather light hypotheses, e.g., hypotheses (i)-(iv) below, a

bounded, absolutely continuous (in ST - S(o)) weak solution is a strong

solution. This is so because the procedure that had led formally to 1.6

can, in the case of an absolutely continuous u, be reversed. Conversely,

a strong solution is weak.

Let V(ST) denote the space of bounded functions v(xy,t) Lipschitz-

continuous on ST' Define V'(ST) as its completion under the norm

1/2
O1IIl supT f 1(v(xyt))2dxj

all y

define V"(ST) as the completion of V(ST) under the second norm

Ilvi" u vxYt2xd 1/2

let V(S ) denote the space of bounded functions *(x,y) Lipschitz-

continuous on S and V'(S ) the completion of this space under the norm
0 0

IIII' = sup jj($(x,y))2dx "

Any member of V'(S T ) is a function w(x,y,t) such that

W(y,t) = (w(xyt))dxj

is continuous in yt; similar statements hold respecting the members of

V"(ST) and V'(So) . To see this, let vk(x,y,t), k = 1,2,... ,

belonging to V(ST), approximate w in VI(ST) . Thus,

lim sup ((v(X,y,t) - Vm (x,y,t))2dx = 0 .
k,m--oo OAtIT j k

all y

6
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This implies that the continuous functions

Wk(y, t) = {S(Vk(Xy,t))2dx 1/2

converge uniformly with respect to y,t , since by the triangle inequality

we have

Wk(Y't) - Wm(Y't)I < -J(vk(X)Yt)- vm(Xpy~t))2dx} 1/2

and, therefore,

lim sup IWk(y,t) - Wm(yt)f ± 0
k,m--.c* OtST

all y

Hence, W - lrm Wk is continuous, as asserted.

We shall prove the existence of weak solutions of our problem under the

following hypotheses:

(i) The coefficient c(x,y,t) is bounded and belongs to V"(ST).

(ii) The inhomogeneous part g(x,y,t) belongs to V"(ST).

(iii)The kernel K(xy,t,y') satisfies the following conditions:

(a) K> 0

(b) A sequence of non-negative,continuously differentiable func-

tions K M(x,y,t,y') , m = 1,2,..., exists such that

JIK(xjypt 'y') - K (xyitY'-)jdy'<

in ST , where the em are constants that approach zero as m- co.

(c) K(x,y,t,y') < Ko(y,y') , where K (y,y') is integrable
0 0

with respect to y' and also integrable with respect to y on any sphere

jyj _< const., and where

7
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Ko(y,y')dy' < ko ,

k being a constant.0

(d) For all y ,

lim f(SIK(x,y,t,y') - K(xYlt,y')ldy dxdt = 0

(iv) The initial data function (x,y) belongs to V'(S 0 )

If u is in V'(ST) and the above hypotheses are satisfied, the

integrals in 1.6 will be continuous with respect to y, T. We see this

first for the integral on the left, which can be expressed as a difference,

u( = + u)2dx - Ij(- u)2dx

of two terms already known to be continuous. Analogous considerations apply

to the first and second integrals on the right and also to fqcudxdt and

S qgdxdt . The integral

J dxdtjKvdy'

in which v = Tu, is easily seen from Schwarz' inequality and hypothesis

(iiic) to be continuous in T uniformly with respect to T,y . Hence, all

that remains is to prove that

.. '(S Kxy .t~yI) - K(xy 2.t9y))v(xiyht)dyl ) dxdt

tends to zero as yl-+ y. Fubini's theorem and Schwarz' inequality show the

latter integral, in absolute value, to be

8
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< Idy' IK(x,yt,y' )-K(x,ylty') dxdtI 1/21 ; K(x,y,t,y' ) - K(XY 1 ,t,Y')I'

1/2
(v(x,y, ,t))2dxdt}

't)
Y (I(x~y~t~y') - K(x,,yiitiy')Idy ) cixdt)1/

jJ IK(x,y,t,y') - K(x,ylpt,y')I (xyIt)dxdtdyI 1/

and by (iiic) to be

< (2) IIV2 I (I(x,y,t,y') - K(x,ylt,y,)ldy/

This tends to zero by (iiid). Thus, all the integrals that enter 1.6 are

indeed continuous in y,T, as asserted,

THEOREM 1 (Existence of weak solutions): Under hypotheses (i)-(iv),

the problem of satisfying 1.1, 1.2, 1.3 has a weak solution belonging to

V'(ST) .

The weak solutions we shall actually construct belong to a narrower

class than that ascribed to them above, and in the narrower class they are

unique, i.e., are uniquely determined by their initial data. These weak

solutions, namely, all have the property, hitherto unmentioned, of satisfy-

ing the inequality

S1.7 (u(x,y, ))2dx < ((x,y))2dx + 2 -c 2 + ufKudy' + dxdt

for all vectors y and all T in the interval (O,T). This inequality,

9
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like 1.6, is formally deducible from 1.4 in which we would take

D = ,F(u) = u2  and T =1 to obtain

.Su2 (vt +Zj, Yrvr)dS =2 f{cu + ufKudy' + gul dxdt

The left member of the latter relation, however, equals
(u(x,y,t))2dx - + Zs S Z2

fux~,O)dx + 7, dt u2  rrd

d x denoting the element of area on B' , while on B' y v > 0. From
5 s s r r

these remarks, inequality 1.7 easily follows, at least for strict solutions

of suitably regular problems. For weak solutions as described, the inequality

will be seen to carry over by closure.

THEOREM la: The weak solutions rendered in Theorem 1 constitute a

linear class W each of whose members u(x,y,t) is subject to inequality

1.7 with appropriate c(x,y) and g(x,y,t)

THEOREM 2 (Uniqueness of weak solutions): The members of W are

uniquely determined by their associated 0's and g's: the member correspond-

ing to $=0 and g = O, in particular, is u = O.

When c,g,4, and K are requisitely smooth (continuous differentiability

would be enough), and, in addition, K is sufficiently attenuated near

y' = e4 a strong solution of the problem exists. Respecting c, g, and *,
the following assumptions, added to the previous, suffice:

(i) c(x,yt) and g(xy,t) are uniformly Hblder-continuous with

respect to xs, s = l,...,d, with H-lder exponent a(O < a< 1) and HOlder

constants denoted by c and b , respectively.

10
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W c(x,y,t) and g(x,yt) are uniformly Lipschitz-continuous with

respect to t.

(iv)1  *(x,y) is Lipschitz-continuous with respect to x with a

uniform constant denoted by iF@

(It might be expected that these conditions should be of the same kind,

all Lipschitz, or all Htlder, conditions. With all Lipschitz conditions, the

solution, however, still could not be proved to be more than Holder con-

tinuous (with any exponent < 1 in an appropriate region), and with only

H8lder conditions nothing could be proved at all. Therefore, the three

hypotheses have been left of different kinds.)

Respecting K, four new assumptions are made:

(v) I For t> O, At > O,

IK(xyt + Aty') - K(xyty'), dy' < k

where k is a constant.

(v)2 With Axr O, x(r) = (Xl,...,x _lx + 4rXr+l,.%Xd) ,

we have

K(x SK)ystsy,) K(x,yt,yl1) dy' < k , r 1

a- a

where k is a constant.
a

(v)3  Let yir) y(Yj "' -). A positive X and, for3•" -l Yr+l'*-

each r = l,...,d, a function Kr(y'r)) , exist such that, if y

K(x,yt,y) < K(YOr 1

and

11
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SKr(Yr)) dyfl 
< k

for r l,...,d, where k is a constant.

(v)4 A constant K1 exists such that

J K(x,y,t,y)lyrl dy' < K1 , r= l,...,d.

We can now state

THEOREM 3 (Existence and uniqueness of strong solutions): Under

hypotheses (i)-(iv), (i), t, (iv)l, (v)I - (v)4, the problem of satis-

fying 1.1, 1.2, 1.3 has a strong solution, which is H8Ider-continuous in

ST- S(°) and, for any E > 0, uniformly so in ST- S . This solution

is unique.

The paper is organized as follows:

Section 1: Statement of problem. Notation. Main results.

Weak and strong solutions are d~fined and the main results as to their

existence and uniqueness stated.

Section 2: Uniqueness and continuous dependence. Weak solutions of the

class W defined above (W includes all strong solutions) are proved

to depend continuously on their initial data and thus, in particular,

to be uniquely determined by their data (Theorem 2). Since the weak

solutions obtained (Theorems 1 and la) belong to W , they are thus

seen to be independent of accidental features, like selection procedures,

pertaining to the construction process.

Section 3: Positivity. Monotonic dependence of solution on data, co-

efficient,_ kernel, and inhomogeneous part of equation. The solution is

shown to be positive when the quantities indicated have appropriate

12
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fixed signs. All solutions, therefore, depend monotonically upon these

quantities.

Section 4: Truncated problems. Proof of Theorems 1 and la. A special kind

of problem is defined that later proves solvable by finite difference.

Anticipating that the solutions of these special problems exist, we

here show how they can be used to approximate the solutions of arbitrary

problems. Thus, Theorems 1 and la are proved.

Section 5: Difference scheme notation. Some remarks. The remarks are con-

cerned mainly with our treatment of the improper integral.

Section 6: Statement of difference equations. The difference equations are

set up under assumptions deemed appropriate. They are shown to be

recursive.

Section 7: Outline of convergence proof. Estimates deferred to Sections 8

and 10 prove that, as the mesh widths vary, the solutions of the

difference equations are compact. This fact and uniqueness (Theorem 2

and Section 2) prove the solutions of the difference equations to

converge to a weak solution of the corresponding problem.

Section 8: A bound for the solution of the difference equations and an

estimate for its t-difference quotients. Two of the estimates applied

in Section 7 are developed.

Section 9: Boundary behavior. The manner of the assumption of boundary data

and related questions are discussed for solutions of difference

equations; the results are applied in Sections 10 and 11.

Section 10: Lipschitz conditions in truncated problems. The remaining

estimates required in Section 7 are given.

12a
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Section 11: Hdlder conditions in untruncated problems. Proof of Theorem 3.

Estimates are obtained that have the effect, under appropriate

hypotheses, of showing that a weak solution is strong.

2. Uniqueness and continuous dependence. Uniqueness and some allied

properties are demonstrable under fewer restrictions as to K than those

of section 1. Assumption (iii), n-mely, can be replaced by

(iii)° K(x,y,t,y') is integrable with respect to x,t,y' on ST

Furthermore,

IK(x,y,t,y')l ( K (y,y')

where K0 (y,y') is integrable with respect to y' , and integrable with

respect to y on any sphere jyl _ const., and where

Ko(y,y')dy' < k0 (k = constant)

Our earlier uniqueness statement (Theorem 2) is included in

THEOREM 2.1. Under hypotheses (i) and (iii)o, a function u(x,y,t)

belonging to V'(ST) and satisfying inequality 1.7 with 0 = , g = 0

12b
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is zero almost everywhere in S

This fact is an obvious corollary of an estimate below for the growth of

U~t) sup $(u(x,y,t))2dx

In stating this estimate, for convenience we suppose

(i)0  c is a non-negative, bounded member of V"I(ST). (Non-negativity

is merely a normalization arising, for instance, as a result of a substitu-

xt
tion u = e v with sufficiently large X.)

THEOREM 2.2 (Continuous dependence). Under hypotheses (i)o, (ii),

(iii)o, (iv), a function u(x,y,t) belonging to V'(ST) that satisfies

inequality 1.7 for all y and for 0 < t < T also satisfies the integral

inequality

2.1 U(t) < (11411,2+ 11gl "2e(2ko+ 1)t

for 0 < t < T. (The norms have been defined in Section 1.)

Proof: From 1.7, since c > 0, we have

2.2 Ju(xY~ )) 2dx < 11411,2 + 2 fuJ Iudyt + gul dxcdt

for all vectors y and all - in the interval (O,T). By Schwarz' in-

equality and (iii)o,

(JKudyI)2  < (jlI Idy, (jIK u2dy)

<kKo(YY,,) (u(x,y,,t))2dy,
-- 0

hence, by Fubini's theorem,

13
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2.3 3 (JKudy~) dx < kcJdxJ K(Yy') (U(X'y't)) 2dy

koJK(ypy')dy' f(u(X'yj't))2 dx

k'1J(t).
- 0

Consequently,

2 1/2

lu ( SKucy') dxdt < $u2dxdt S Kudy') dxdt}

< k U(t)dt.

0

This, inequality 2.2 , and Schwarz' inequality applied to Jgudxdt enable

us to deduce from relation 2.2 the inequality

U(T) < 11011,2 + 211glj" (t)d + 2k0  U(t)dt

0 0

< 11011,2 + 11g11 ,12 + (2k + 1) J(t)dt
0

valid for 0 < <T . It is easily seen that, for 0 < t < T U(t) <

V(t), where V(t) is determined by the conditions

v,(t) = (2k + l)V(t)

V(O) = !1€11 ,2 + IIgIl ,,I 2

Thus, estimate 2.1 is justified.

14



NOLTR 62-193

3. Positivity. Monotonic dependence of solution on data, coefficient

kernel, and inhomogeneous part of equation. When the coefficient, the in-

homogeneous part, and the data are positive, the solution will be positive,

too. This is more precisely stated in

THEOREM 3.1. Under hypotheses (i)-(iv), let u(x,yt) denote the weak

solution belonging to class W of which we are assured in Theorems 1 and

la. If

c >0, g>o, ¢_0>o,

then

u> 0

at almost all points of ST-

A significant consequence of positivity is that u depends monotonical-

ly on -c, g, K, and , as we assert in

THEOREM 3.2. Consider two problems of the form specified in 1.1, 1.2,

and 1.3, each satisfying hypotheses (i)-(iv). Distinguishing corresponding

quantities in the two problems by the subscript 1 or 2 , assume cI > 0 and

c _>cK,- ' >  K ' € >¢
2 cl g g2  K> 2 01 2

denote by uI and u2  the weak solution4 in W, of these respective problems

as provided by Theorem 1. At almost all points of ST

Theorem 3.2 is proved by noting that the difference v ul-U2

initially is non-negative and is a weak solution of the equation

15
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vt+ ZyjVx + CV= SKlvdy' + ((c2 - cl)U 2 + S(Ki-K2)u2dY' + gl -g 2 )

The expression in parentheses being non-negative, Theorem 3.1 applies.

Theorem 3.1 need be proved but for bounded, Lipschitz-continuous solutions

since, as appears from Sections 2, 4, and 7, the (weak) solution of an ar-

bitrary problem can be approximated by solutions, which are bounded and

Lipschitz-continuous, of relatedapproximating, "truncated" problems. We

shall therefore assume that u is bounded and Lipschitz-continuousi

(Lipschitz-continuity with respect to x,t for almost all y, as is the case

for a strong solution in the absence of truncation, would work equally well.)

Relation 1.4 holds for any Lipschitz-continuous solution, and we may make

the following substitutions:

F(u) = u u = e2kobt v, = e 2 ko8 t

where 8 is an arbitrary number > 1. Thereby, 1.4 becomes

3.1 v( t + Yr Vr)dS = -(c+2ko 8)v + Kvdy' + ge j dxdt

D

a relation for the new dependent variable v. Obviously, it suffices to

prove

.3.2 v> 0 in S.

Imagine that, to the contrary, for some positive valuef of T we have

3.3 m inf v(x,y,t) < 0
x E
all y
O<t<T

16
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In this case, a vector y* exists such that

3.4 m* = min v(xsy*,t) < m/8
x E
O<t<T

Let the minimum m* be realized at a point P*: (x*,t*), 0 < t* < Tp i.e.,

3.5 v(x*,y*,t*) =m*

and assume t* the least value of t at which this minimum occurs. Thus,

3.6 v(x,y*,t >m* for 0 < t < t x

By relations 3.3 and 3.4

5K(x,y,t,y') v(x,y' ,t)dyl > k m > k08 m*

Hence, and becaus g > 0, equation 3.1imle

* v(V + ~v)dS .> - cvddt -k8 J(2v - m*)dxdt

*D DD

If N is a neighborhood of P* such that v(x,y*,t) < m*/2 in nTf N,

we thus have, since c >0,

3.7 Jv(Vt+Z V )dS > 0

for D C X fn N .This, however, is incompatible with the minimality ofT

3* expressed in 3.5 and 3.6 ,which we see as follows.

For to > t* and h > 0 ,consider the truncated (d-'l)-dimensional

pyramid I
lx~ - xVj < Iy*j(t- t) , j = 9d

0 t* -3h t < t*

17
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with altitude 3h. The apex of the pyramid is at the point (x*,to). We
0

choose h and t - t* so small that

3.8 PYrt C N

Evidently, 3.7 then holds whenever D C R, where

Pyr ();9
t,h T

0

The boundary of R cansists of a sloping portion belonging to the

pyramid and also, possibly, of a "vertical" piece, or pieces, over the

boundary of . (At a point (x P...,x of a "vertical" piece of the
= .) . t

boundary of R, some x C.)

With Q < < h, let

P() (xn, t()

denote an interior point of R not farther from P* than the distance .

Assuming t*-h < t(i) < t* , consider the parallelepiped

x(q) y(t-t(q))  E/ i= lo
Ixi- - Yx i I < ..., d

Q , :

0 < t(q) - t < h

For sufficiently small E

3.9 Q C Prt,h

The two horizontal faces

lxi - x q) + ythl c £/2, i 1 , ... , d,
FI

t =t "8(  h

and

18



NOLTR 62-193

xi Xj _ / = 1, ... , d2 t t t(q)

d
of the parallelepiped are each of area ed. The non-horizontal (d-l)-

dimensional faces are parts of the planes

xi  O = ' xq) •+ a

for the normal v = (vl, ... , Vd, Vt) to one of these faces we note that

d
3.10 Vt + E Y V 0 

i=l

Knowing P* , we can select h such that, for any selection of P

and all sufficiently small E

3.11 Q CR.

If x* is interior tot, this is evident from 3.9 , for h in this case

can be so reduced that the space component x of any point (x,t) of

PYrt h also will be interior to 1. If, on the other hand, x* is on the

boundary of X , we see from 1.3 and 3.5 that, at x* , the vector y*

points outward from t. Hence, the characteristic --- the straight line

with slopes dxi/dt = yi' i = 1, ... , d - - - through P*, positively

oriented in the sense of increasing t , points outward from R : the seg-

ment of the characteristic for which t*-h < t < t* , in particular, is

contained within R . Corresponding segments of neighboring (parallel)

characteristics also will be contained within R . , however, is

generated by such segments. Hence, P(') being selected, Q E, will be

contained within R, as asserted, if e is sufficiently small.
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Because of 3.11 and 3.8 , we can choose D = Q in 3.7 • In

view of 3.10, inequality 3.7 then reduces to

3.12 vdx - vdx > 0.

F F
2 1

d
Dividing this by d  and letting E-4 0 proves

v(P~) - V(P >()** > 0

where P is the point with the coordinates N y*h, tW h
i

Now letting q -0 0 proves

v(P*) - v(P**) > 0

where P** is a point on the plane t - t* - h . This contradicts the mini-

mality of m* , i.e., contradicts 3.5 and 3.6 , and in view of the boundary

condition we conclude that m* = 0 . This means statement 3.2 holds, all

we needed to prove.

4. Truncated problems. Proof of Theorems 1 and la. A problem of the

type described in section 1 will be called "truncated" if g(xy,t), like

K(x,y,t,y') , is non-negative and both are zero when y is in a neighbor-

hood of the union U of the planes ys = 0 , s = 1, ... , d . Truncated

problems play an essential role in our proof of Theorems 1 and la, for their

solutions, properly combined, approximate the solution of any problem, while

they themselves are solvable by finite difference methods. Their solvability

will be discussed in section 7, their approximative capability here: the

effect of the combined discussion is to prove Theorems 1 and la.
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Our present aim, stated more precisely, is to show that the weak

solution of an arbitrary problem can be approximated in V'(ST) by the

solutions of appropriate truncated problems with, say, continuously differen-

tiable coefficient, kernel, data and inhomogeneous part. We anticipate the

fact, to be proved in Section 7, that such truncated problems have Lipschitz-

continuous strong solutions. Three steps are involved.

The first step is to understand that, under any stipulated boundary and

initial conditions, equation 1.1 is solvable for any g satisfying

hypothesis (ii) if solvable for any such non-negative g . Any g subject

to (ii) can be represented, in fact, as a difference

g=gl-g 2  (gl' g2 > 0)

of non-negative functions also subject to (ii). If u1 and u2 are weak

solutions of the respective relations

Lu1 = gl + Ku1dy' :Lu2 = g2 + jti 2 dy'

where Lv = vt + Myrvx + cv, then u = uI - u2 evidently is a weak
r r

solution of the equation

Lu = g + JKudy'

Thus, it suffices to be able to solve 1.1 for non-negative g , as asserted.

In what follows, we shall generally assume g > 0

The second step is concerned with problem 1.1, 1.2, 1.3 when g > 0

and c, g, K, and 0 are all continuously differentiable besides satisfying

hypotheses (i) to (iv); for convenience, (i)0 (Section 2) also is assumed.

The (weak) solution of such a problem will be exhibited as the limit of

solutions of appropriate truncated problems. It will belong to W . More,
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if u and v are the solutions of two such problem., say with

+ u + clu = g1 + JKludy'ut r

u(x~yO) = Ol(xy) 0

v~.  + r + c2v= 9 + JKvdy'

v(x,y)o) = 02(x,y)

the difference u-v will be shown to satisfy relation 1.7 ith c =c I ,

K= K1 ' g = gl -g2 
+ (c2 -1 )v + J(Kl-K2)v dy' , t=1"2; b

Theorem 2.2, it will then bellow that

4.1 IIu vil'2( 1 (112<211,2 + 1-g2  + II(c-cI)vi1,2 +

+(max fIK - K ldy')Iivll ',2)

T

where C is a constant. (An estimation is used like that for 2.3.) This

step, the main task of the present section, will be carried out presently.

The third step is to perceive that the solution of a general problem,

one satisfying hypotheses (i) to (iv), can be approximated by solutions of

problems of the type considered in the second step. The latter solutions

belonging to W , their limit, the solution of the given general problem,

too belongs to W : Theorems 1 and la are thus proved. We shall carry out

the third step now, assuming the second to be valid, and then return to

justify the latter. We make assumption (i) for convenience, in place of
0

(i), and take g > 0 , as from the first step we may. Then we approximate

0 in V' (S ) by a sequence of continuously differentiable functions
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Ok(X,y) , k = 1,2, ... , g in V"(ST) by a sequence of non-negative,

continuously differentiable functions gk(x,y,t), k = 1,2,... , and c

in V"(ST) by a bounded sequence of non-negative, continuously differentiable

functions ck(x,y,t), k = 1,2,... ; K we approximate by the Kk of

hypothesis (iiib). it follows from step two that, for each k , the problem

corresponding to Ok' Ck' gk, Kk has a solution uk with uniformly bounded

nor. j1Uk1I ' and that, for all k and m,

I1u- u 11, 2 < C(l pk- _011,2 + 11gk- gm11 '2 + II(ck-cui '2

+ (Ek + E,,)llu 11'2)

k Mmm

Each term on the right tends to zero, however, as k,m-* co, because of

(iiib), other stipulated approximation properties, and the existence of

uniform bounds for the c and the IIuk f' . Hence, the uk converge in

V'(ST), and, as is easily seen, the limit u is a weak solution of the

given problem belonging to W . Theorems. 1 and la thus hang on the validity

of the second step.

In justifying the second step, we shall actually do more. By V+(ST)

will be meant the class of functions w , defined on ST , each of which

is the limit of a monotonically increasing sequence of functions belonging

to V(ST  . Analogously, by V+(So) will be meant the class of functions

defined in S each of which is the limit of a monotonically increasingO0

sequence of functions belonging to V(So) . We replace the earlier
0

hypotheses by the following:
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(i) c(x,y,t) is bounded, and -a belongs to V+(ST)

(ii) g(x,y,t) is non-negative and belongs to V+(ST)

(iii) (a) K > 0

(b) A non-decreasing sequence of non-negative, continuously

differentiable functions Km(x,y,t,y'), m- 1,2,..., exists such that

K(x,y,t,y') lim Km(xpyjt,y')
m -00

at all points of

(c) the same as (iiic)

(iv)+  belongs to V (So)

These assumptions obviously are satisfied when g > 0, 4, c, g, and K are

continuously differentiable, and (iiia,c) hold. Hence, the second step in

the argument above will be justified when we prove

THEOREM 4.1. Under hypotheses (i)+ - (iv)+ , a weak solution of class

W of 1.1, 1.2, 1.3 is obtainable as the monotone limit of solutions of

appropriate truncated problems. If u and v are the solutions of differ-

ent problems, each satisfying hypotheses (i) + - (iv) + , u-v is subject to

an inequality of the form 4.1

The last statement is an obvious corollary of the first, the inequality

in question being obtainable as the limit of analogous inequalities for the

(Lipschitz-continuous) solutions of the approximating truncated problems.

The first statement depends on a suitable procedure of setting up truncated

problems to approximate the given one.

Let (p(s) be a monotonic, infinitely differentiable function on the

-positive semi-axis s > 0 such that
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p(s) = 0 for 0<s<l/2j 1 for s > 1

For m > 1 , the function
pm(s) = 4)(2sl / m)

thus is monotonic and infinitely differentiable and satisfies the conditions

m(s) = 0 for s < (/ 4 )m

= 1 for s > (1/2) m

Moreover, for s > 0

q)(S)" 1 as M / A O .

If p(y) is a non-negative function of the vector y = (Yl' ""Yd ) ' we

define a "truncation" of p as

d
_(Y) IT M-- m (Iy j ) " P(Y)•

For y U, a truncation evidently tends monotonely to its "original":

po(y)/' p(y) as m---, if y .

Let us now consider a problem satisfying hypotheses 
(i) - (iv)

We shall first approximate O(x,y), -c(x,y,t), g(x,y,t), and K(x,y,t,y')

by non-decreasing sequences 4k(x,y), -Ck(X,y,t), gk(xyt), and

K k(x,y,t,y') (k - 1,2,...) , respectively, of continuously differentiable

kkfunctions. We then truncate the gkand Kk with respect to y . The

truncated functions, denoted by
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gkm(X)ytt), m = 1,2,

Kk(x,y,t,y'), -m = 1,2,...,

-for fixed k increase monotonely with m . They define, for each k and m,

what we have called a truncated problem. Any such truncated problem, however,

as will be seen below (section 7), can be solved (by finite difference

methods); its solution Ukm is bounded uniformly with respect to k and

m (Theorem 8.1), is Lipschitz-continuous and thus satisfies appropriate

relations of the form 1.6 and 1.7, and increases monotonely with m and

with k (Theorem 3.2). Hence, the limit

u = lim lim ukm

exists and satisfies 1.6 and 1.7 , i.e., is a weak solution of class W

of the original problem. This proves Theorem 4.1.

The remainder of the paper will be concerned with suitably smooth,

truncated problems.

5. Difference scheme notation. Some remarks. Let > O, q > 0,

> 0 with I= CA an integer, and set

Let L be a positive integral multiple of 9 . By i and j we shall mean

multi-indices

i =" (il, e..e, id)P - < i s  < I, S = i, . , dp

J = (lp "'" Jd ) '  lis I < L, s = 1, ... , d,

with integral components, and by k i = ( i1, ..., ( id) and
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1. = (nJl . 'lid) corresponding points of): and of y-space, respectively.

Symbols such as i ii , jI will be similarly used. For any

multi-index, such as i , we shall write

jil = max IirIr

The set of all multi-indices i such that, for some s = 1, ... , d

s = , ir. < I for r + s

will be called , and the set such that, for some s ,
s

is I < i I for r + s,

- +
. These sets correspond to Bs and B , respectively. The sets

s,j = + for J < 0

for js > 0
SS

= empty set for J s 0

correspond to B and the setsspy

=-U ,., for Js < 0
s,J ~s r .r,J

d
s rUl r,J for J. > 0

S+s for s =0

to B' . (Recall that u is prescribed zero on B and is unpres-s,y s,y

cribed on B' )
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Let denote the set of lattice points (Ui, t j, n-r) in xyt-
L

space, where i and j are multi-indices as above, and n is a non-negative

integer. Our aim in the difference scheme below will be to approximate the

solution u(x,y,t) of a given, truncated problem by functions u ' 1'T (x,y,t)
L

defined on When t , , , and L are regarded as fixed, for

brevity we write

i, rj, n ) u

and for any function O(x,y,t),, unless otherwise specified,

0( i, qj, nT) = *Xs (ki, qjn ni) n

etc. In the case of the kernel K , we write

Kn -- d-2d K(x,y,t,y') dy'dxdtdy ,
Ki. .= f

tijJ'

the domain of integration being the parallelepiped

ki s < x s< (i s+ !), s A ,..

Js- Ys < i(Js + 1) ,
n

ijj'l :i' < '< (j' + 1) ,: s

nT < t < T(n + i

(In this definition, it is presumed that K is defined for -I < x < I+ .

SSWe might, for instance, take K = 0 for any x s> I.) When all the defini-

tions of this section are concluded, we shall come back to note certain
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consequences of this one.

Let Xr be the translation operator whose effect on the multi-index ±r

is to increase its r-th component by one while not changing the other com-

ponents:

Xri -X(i, ... irl , 
1 r , J r+1, .-. , id)

"'" r-19'ir +1 r+l' d

The effect on a function indexed with i , say , is defined by
ij = n

Xr = X(i),j

The imverse of this operator, denoted by X , reduces i by one while
r r

leaving all other indices the same. The operator

Tr,j  Xr  for jr < 0

for J > 0

r r

has the effect of moving i nearer

As analogous to Xr, let Yr denote the translation operator whose

effect is to increase jr by one while not affecting other indices, and

Y-1 its inverse. In terms of these, conventional x- and y-difference
r

operators are introduced as

5.1 8 = X -1, Er
= Yr 1, r=l, ... ,d,

and

1 I-X , =i- , r= ,...,d ,
r r r r
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but we also shall use

5.2 8~j= -X-1  when Jr > 0'5 roj rr

= Xr - 1 when Jr < 0

and

5.2 r = X- 1 when J > ,
rpj r r

=- X_ when j < .r r

We note that

5r 8r,j = (1-Tr,j)

this property will turn out to be a significant one.

We now return,as promised, to our-kernel approximation. Anticipating

hypothesis (iii)1 in section 6, assume K(x,y,t,y') to be continuous at

almost every point of T Note at the same time that the step function

KL ,(x,yty') n in ijj' for IJI, IJ'1 < L

=0 for IJI > L or j'Il > L

tends to K(x,y,t,y') in ET at each of its points of continuity, as

, r, '-00, L-# o . Then

5.4 lim KL 'q (x,y,t,y') = K(x,y,t,y') almost every'here in T

L -O*

Furthermore,
-5.5 K '9" (xy,ty') dy' < K(x,y,t,y') dy' < k° .0
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These facts suggest that we attempt to approximate the improper integral in

equation 1.1 by sums (these are essentially Riemann sums) of the form

d Z U n

lj' I<L

The attempt succeeds when the step functions

n T t < (n +l1)
uij for < x < (is+ 1)X (stv,...,d)

fr s <  s < (Os+ 1)q

are uniformly bounded and tend to a limit u(xy,t) at almost all points

(x,y,t) as L-0 * and , q1, T --00, the approach of each parameter to its

limit being through suitable values. To be more specific, let k' 1k' tk9

* Lk, k = 1,2,... , be sequences of values of , v, , L, respectively,

such that the functions

Uk(X.*ypt) -- UL k (xyt) ,

as stipulated, are uniformly bounded and tend to u(x,y,t) almost everywhere

as k-* co. In terms of

K k(x.ytjy')- Kk' k k'kT(xyty') ,

the Riemann sums considered can be written as

JK k(X'y't'yl) uk(xJ'y, ,y ) dy'.

31
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We shall need to prove the existence of the limit of these sums as k--poc

only in a weak sense to be described below. Let

Qab: a. < Ys < bs , s = 1, ... , d

be a parallelepiped in y-space. Let v(x,t) be a continuous function which

vanishes for x i and for t > T, where T is an arbitrary positive

constant. We shall need to know only that, under the hypotheses explained,

for any v as described and any numbers a and b , we have

5.6 J dy fvdxdt (k- Ku)dy'--O
Qa
~ab

as k- Oo.

To see this, we write the integrand as

K(uk - u) + u -K k K)

and express the above integral as the sum of two, the first Jlk correspond-

ing to the first summand above and the second J2k corresponding to the

second summand. The boundedness of iukl, the convergence of uk and K,

and 5.5 show that Jlk and J2k both-*O as k--av. Thus, contention 5.6

is proved.

We also remark that, from the definition of Kijj, and hypothesis (iii),

d ~ nSd Ki < k
5.7 ijj' - 0

(this is the same statement as was made in 5.5 .) When assumption (iii)1

below is made concerning difference quotients for K, the following

-analogous statement can be made about Kn : if 8 stands for 8 ,
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Sr /9, or the analogous differencing operator with respect to t

d
5.8 In 18 < kiC

6. Statement of difference equations. The difference equations set up

below will be justified only for truncated problems in which, besides assump-

tions (i) (ii), (iii), (iv), (v)4  of sections 1 and 2, the following

additional hypotheses also are satisfied:

(i) c(x,y,t) and g(x,y,t) are Lipschitz-continuous with respect to

x,y,t with uniform constants we shall denote by cI and b, , respectively.

Furthermore, 0 < c < c0 and igi < b , where c and bO are constants.

(iii)1 K(x,y,t,y') is continuous at almost every point ofyT . If

DK(x,y,t,y') symbolizes a difference quotient of K(x,y,t,y') with respect

to any of the 2d + 1 arguments Xr , ys t, r,s = 1, ... , d, e.g.,

K(x,y,t+z~t,y' ) - K(x,y,t,y' ) (t O
at

we have for a suitable constant kI

I IDK(x,y,t,y')Idy' < kI.

(iv)I O(x,y) is Lipschitz-continuous with respect to x with a

uniform constant denoted by )1" Also OP < 4o where 00 is a constant.

(IV) O(x,y) is uniformly Lipschitz-continuous with respect to y
y

We now describe our difference scheme. Corresponding to 1.2 is the

initial condition
o

6.1 uij Oft i,j) ,
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and corresponding to 1.3 the boundary condition

6.2 uij = 0 on *, ' s = 1, ... , d.

Corresponding to the integro-differential equation 1.1 we set up the

difference equations

l(un+l n .+ j s j1i + cnn
.uij - ) + E n +cijuij=

6.3
9n +qd E n un

- gij + d1 uj'

lj' I<L

for the following values of the indices:

6.4 n = 0,1, ... ; J I < L ; jil < I or i £

This scheme is recursive: for each choice of n and j , the values
n+l

of u , appropriately ordered, are successively obtainable from previously

calculated quantities. This fact will be more apparent from a rewriting of

equations 6.3 in terms of the Tspj . We simply apply 5.3 in 6.3.

Then, rearranging, we have, as equivalent to 6.3,
lunln )un nl

(l + Q j IisH)uil = (I - c ij)u j -lis IwTs,iuij

6.5

+ T + d ' q dj n+ gij K i uij'"

n

Assuming the uin to be known for fixed n and all i, and j , we shall
ij

n+lsee from this how the ui are determined. The determination is immediate

in the case j 0 0. In the contrary case, j + 0, ij is expressed in 6.5
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in terms of quantities indexed with n , presumed known, and quantities of
n+li'

the type u i. for which i' falls one step nearer some s, than i

(the 4 ,' we recall, carry boundary data). To be more exact, consider a

particular j 0. The intersection

index set'

of all the for non-vanishing J is not empty; let i* denote a

index belonging to this intersection.. and set

i is S,0

the product in the right member to include every operator T- I  for which
s,j

is 0 . As it varies over all possible positions and k, s -l,...d,5J

over all needful, non-negative integers, the index

-k
T .i.j + s,j

n+l

varies over all the lattice points i at which uij is not already

prescribed in advance. Thus it suffices to show that, for any i* , the

quantities

-k
6.6 T s n+l

+ 0 sj

n+l _-Ir ,i n+l

can be recursively determined. First, u, _(s,ju can beJ s + 0

calculated from 6.3 , uij being known on when j + 0 . From

this result, - un+l for j j 0, similarly can be found
t ,TJ iJ '
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Induction would show that all the quantities 6.6 , in suitable order, can

be determined by appropriately continuing this procedure. Hence, the scheme

6.1-3 is recursive, as asserted.

For future reference, we note that equations 6.3 also may be written

as

(l +j I ) un+l ( 1  n)n + OyB Xu '
s ij ic ij sj s ij

s s6.7

+ 1 + nu + td Kn n

si s i + 'g11 i+ Ii'Ijs lJ' j<L

where, for Js > 0,

6.8a B 0, C = is ,sj ~ sj

and, for Js < 0,

6.8b B. -jsi , C =O.

7. Outline of convergence proof. The proof described in this section

applies to any truncated problem satisfying assumptions (i)-(iv) and (v)4

of section 1 and (i) , (iii),, (iv)l, (iv) of section 6. For such a

problem, the solutions of the difference equations, 4"'(x,yt) are
equibounded and, for any f > 0, satisfy Lipschitz conditions in ST -

with respect to Xr, ysV t, r, s =l,...,d, which are uniform in this set

for all possible x,y,t, ,jT,L. This will be proved in sections 8 and 10

below. Because of the uniform bounds and the uniform Lipschitz conditions,

from any infinite set of lengths L tending to infinity and of suitable

mesh widths E, Ti, I tending to zero, sequences Ek, kj'k,"k, k=l,2,...,
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can be selected such that the solutions

u (k)(x,y,t) = CkkP (x,y,t)
ULk

converge continuously 1/ to a function u(x,y,t) that is Lipschitz continuous,

uniformly so in ST - S (E) for any c > 0. This limit function will be

seen to be a strong solution of the problem.

By continuity, u plainly satisfies the requisite boundary and initial

conditions, and we shall now see that equations 1.1 hold almost everywhere,

as well. Let v(x,t) be a function of class C' in the region

x E o < t < T (T>O)

that vanishes identically in a neighborhood of the boundary of the region,

and let vn = v( i,nT) denote its restriction to the lattice S(k) =
(k 'nk 'Tk .On this lattice, consider the difference equations 6.3 deter-SLM

k
(k) n+l

mining u k) We multiply the members of equation 6.3 by v. , sum

over n and i , and eliminate u-differences by Abel's method to obtain
0

un vn+l n~ n+1l_ Vn+l n n+l

i- -vn) -kkk k S+ c i j
n,i n,i,s n,i

Sn+l n n+l d n n

= v. gij + v dk  K ijj uij,
n,i n,i

nk Tk n for arbitrary a and b sum over j

such that in EQa,b' and let k* co . Continuous convergence, and the
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remarks in section 2 concerning the improper integral, show that, as the

result,

- Jdy u(vt i 5 ~ cv)dxdt = f dyff v(g +JKudy')dxdt

Qa,b Qa,b

Thus, u satisfies equation 1.1 in a weak, integral sense. For any e>0,

however, u is Lipschitz continuous in S - S If Qa,b' therefore,

intersects no coordinate plane ys = 0, the partial differentiations in the

above formula may be transferred to u by integrating by parts, and we thus

obtain

dy v u+ Lyu + cu -g Kd dxdt =0,

a,b

a formula valid for every function v, and every a and b , as described.

It follows that equation 1.1 holds almost everywhere, and, hence, is a

strong solution, as contended.

8. A bound for the solution of the difference equations and an estimate

for its t-difference quotients. In this section, under the hypotheses, say,

of Section 6, we shall first prove

8.1 Lu[ 'Y'yt)l < M(t),

k t b k t

where M(t) = oeo + r2 (eo - 1) . Then we shall obtain a Lipschitz
0

condition with respect to t of the form
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8.2 l1'P"(x,y,t,)- 1{ P"(x,y,t")l < ACi + sl5 It' t" ,

where A depends on TM(T), and the constants in hypotheses (i)l, (iii)l,

(iv)l, (v)4 *

For 0 < nt < T, set

M n=maxlU 1nI

the maximum being taken for Ill < I , jjf < L . From the difference

equations 6.5, the estimate 5.7 , and assumptions (i) and (ii) , we
0

have

(,+ 1ij)Iu 1 M+ Mnlj+ b M + tbk M

S s

For suitable determinations of i and j , however, jul: M 1

Hence, we arrive at the inequality

Mn < (1 + kto)M + bo ,

from which, by induction,

M < (l+k )'nM + bo-[(l+k ,)n-1 + (I+ko")n-2 + "" +

k n b k n-r
< Me 0  + o(e )

00

Since M < o inequality 8.1 follows.

To prove 8.2, we shall consider, in an analogous way, difference

-equations, initial values, and boundary values pertaining to the t-difference
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quotients

un+l n

in ii - ivij=

(Difference quotients with respect to x or y cannot be estimated in quite

the same way, the first because of the boundary condition, the second

because the pertinent difference equations will contain x-difference quotients

not known to be bounded.) Boundary values are zero, as before. Initial

values satisfy the inequality

8.3 v I < C.

where C. = 2 . IjIn + b + (c + k) + o , as we easily see after sub-j l~ o o o 0 os

stituting u.= w + u in equation 6.7 (n=O). The resulting relations
13 ii ii u1j

may be written, in fact, as
o1 Q -T si 9 Cs j f- l wi

(I O j Sl[)wij =-cjuij BsXsij +s wij
S Sij S sj xs

+.Bsj (-ui j+XsUij) + 9 ' Csj (-uij+Xs ui )

5 5

+ TgiJ +  q KU' uiJ

Hence, for W. max IwijI , we have

(I +i- I 1511Iwijl I * 5 ' W~ + Cr T
s S0
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and therefore

W < SC r

this was the contention in 8.3

Having considered the boundary and initial values of vi from

equations 6.7 we must now derive the difference equations the latter

quantities satisfy. These difference equations are easily seen to be again

of the form 6.7 , their coefficients, and the kernel in the Riemann sum,

being in fact unchanged, and the new inhomogeneous term that takes the place
of n

ofg consisting of bounded quantities. Dividing by 1 + C. , we

obtain a system of relations that we will regard as equations for

V =v /(l + C.); by (v) 4 (Section 1), the kernel

ij .,i

Kin ( + G jV( + Cj)

in these equations, acted on by q , , gives a uniformly bounded result.

The boundary values of the Vn are zero, their initial values, by 8.3 ,
ij

nbounded. Hence, by the argument by which we proved 8.1 , V is uniformly
ij

bounded, i.e., (U + C) I u j - ui I/ is uniformly bounded, at least

for 0 < nt < T . This implies statement 8.2

9. Boundary behavior. Here we shall consider how the solutions of the

difference equations, and associated sums related to the integrals

0

I u(x,yt)ldyr, r Iu(xyt)idYr e > 0) ,

0f -C

behave neat the boundary faces on which u was prescribed.
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The results do not depend on any kind of truncation. We also shall estimate

the boundary values of x-difference quotients of the solutions, but these

only in truncated problems. Three theorems are formulated, based on the

hypotheses of Section 6.

THEOREM 9.1. If yr + 0, we have

9.1 q#, '<(x,y,t) < A ryx r - C ryI for O< t< T

where Ar,y = max(ol , (b + koM(T))/IyrI). (Cry is dWfined in Section 1,

M(T) in Section 8.)

Proof: Select any fixed r among the indices from 1 to d . With

fixed T > O, for j + 0 set

P P max IT-m.

Pjm- rjm r, Ja rjijl

From equations 6.5 , for (n+l)T < T we obviously have

9.2 (1 + - j 8 T, U.I < I jm + Q I lJslPjm

s 1s4r

+ 0I~rI Pj,m-l

where b = b + koM(T)
00

Either IT m un reaches its maximum Pjm initially, in which case
r,j iij
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or, for some value of n, I tm3 Uni will assume this maximum. In the

latter case, we can replace IT-mru nl in 9.2 by P and obtain

after some cancellations

9.4 QIJrIq Pjm < -Jr I I! PJM- + b .

If jr O, since T =@ t we have

Pjm PJ,-l + r '

' and, by induction,

b(m"3 - m 'i Pjm" <  Pj' +  rl ,

provided 9.4 holds for m" > m > m' . In the last inequality, replace

" by m, and let m' be the least possible integer. If m' = 0, we have

p
jm bm/lJrl'

since P = 0 from the boundary condition; this implies 9.1. If m' > 0,
3,0

relation 9.3 must hold for m = m' : hence,

pb
P i 0mk b (m - MIX)

I < m . max ( bi ' jr'

this again implies 9.1.

THEOREM 9.2. Let 0 < a < 1, and let e be a positive number divisible

by q such that
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9.5 s < b 0 + kM(T)

Then

9.ek max u
maXt)C I4Pq1(x-y .. yr..J1,j'yr+l#...sydt)I <~

C. c(C + X r)

and

9.6- T max luL1Txyv'yl-r~rl .. .y; )

- 1 (X, t) EZtT

where

C0a=4 1 max(M(T)2201 C) +~ (b 0 +k 0 (T)) 1(20)l a(l+log(1+4E))

+ max C1dlgl+c)I
O(C<2C

Proof: The following calculations presume 0 < IjrJ Iq < e Let

Q.m max (P i m 0

We note that

GIJ rIq(l(4im) <1 QrIq(01('-') ) + b T

since - hijr'q 01 k + br =(-IjrIlI *l + b)tv > (b -E > 0

by assumption 9.5; hence,
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In the case in which 9.3 holds, therefore, we obviously have

9,7"11 41 j P O - r Qjmi + b T

Even when 9.3 fails, since 9.4 then is valid, inequality 9.7" again

can be deduced. Thus, 9.7" holds without exception. With 9.7' , it

proves

9.7 qIij 11 Qj, < 'ijrlq Qj,m-I + b Tr j

We shall rewrite this result as

(l +o.1r1q)Q < Q +41jJ + b r

r jm - jm r [ j ,m-l

Setting a rj (l + OIirlf) -Y , we thus have

9.8 QJ - QJ +  (i-j)jm + a b T

Now define

j~l

To prove 9.6 , it suffices to estimate Aom appropriately. Multiplying

p9.8 by q a p = 0,1,..., and summing over Jr gives us

Aom Alm + Ao,_ I - Al,m_ + b lOg(l +, e )

A < A + A - /
pm AA - A + bc/p , p = 1,2,...,

since
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Qp+1 < (IdyF log (1 + .0) for p =0

<L for p-12, .

We rewrite the last results as

9.9 Aom- Ao9 _I < ,A - Al I + b log (U +.Q)

and

9.9p Apm Ap,m-l < Ap+l,m A p+lM-_ + bK/p , p = 1,2

Noting that A°°= A = 0 , p = 1,2,..., by summing with respect to m

we have

9.10 A < A + bg !@E
0 om- im

and

9.10 p A pm < Ap lim + b/p , p = 1,2,....

Hence,

9.11 A < k + bmk (log (l+Qe) + 1 +om P+1)M''  2i + P)+ .

We now note the estimate
e 1 -

Ap+l,m - < QIOP

(this assumes p> 1), where Q= max (M(T),2IC) Also, we recall the
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fact, known from Euler, that the expressions

S1+ ... + - log p

are positive and less than 1 . From 9.11 we thus have

9.12 Aom < Q/Gp + bu (log p + log (1 + .0e) + 1)

Now choose p such that

1p 1
_ < (K) a < q if 0o<ME<1 I

p=1 if mE > 1

We thus also have that

log p < log (1+ (m ) - a )

hence, inequality 9.12 leads to

A < S(mt)' + b(mK)'

where b = b(2c)l- + b max

a -(ilelog (J.+QsE)) lobgmx(lo

This result implies 9.6.

THEOREM 9.3. For a particular index r , suppose K(x,y,t,y') and

g(x,y,t) to be zero when 'yr' < w , w being, say, an exact positive multiple

of . Then for Jr 0 tJ 0 < <
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9.13 . .

where A - max ( (b0 + koM(T))/w)

Proof: Take 0< Ijri.< w and m= 1 in 9.2. Since P1, _i

P'iO - 0 , and, under present hypotheses, b can be replaced by zero, we

obtain

9.14 (l + .0 Y O jsT r,j ij ,- (i +I
4r

Either ' rlj I reaches its maximum Pi, initially, in which case

loPl max I I < li r,, j r,j ij -

or, for some value of n , juj will assume this maximum . In the

latter case, we can replace in 9.14 by P and the resultI-I n+l ii n hersl
rj ij

will prove P~1 = 0 . Therefore, PJl-< <i without qualification when
0 < Ij In < w , while Theorem 9.1 applies in the contrary case lin > .

Thus, 9.13 is completely proved.

10. Lipschitz conditions in truncated problems. Our proof of convergence
for truncated problems (section 7), under assumptions (i-iv), (v)4, il

(ii) 1, (iv) (sections 1 and 6), presumed knowledge of Lipschitz
conditions with respect to xr' ys' t, r,s = 1, ... , d, satisfied for
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O< t < T by i4"i' (x,y,t) uniformly in x,y,t,, ,L. A suitable

Lipschitz condition with respect to t already is to be had from section 8.

Here, we shall deduce the other Lipschitz conditions needed, proving, namely,

that, for 0 < nr < T , the difference quotients

n -I n
18i rij , ii r Uijl

are bounded uniformly with respect to t, q., T, L and all indices.

Let w describe the truncation: i.e., suppose K(x,y,t,y') and

g(x,y,t) to be zero if, for any s, lys I< ; w > 0 . First considering

differences with respect to x , i.e., i-differences, we shall prove

-I n k nt b1+M(n )(c1 +kl) ek onT

10.1 K ijl < e o0 + k 0 (e

A W being the constant defined in Theorem 9.3.

Estimate 10.1 will be obtained from difference equations for the i-

differences considered, which we may obtain by applying 8r, defined in 5,

J to both members of equations 6.7 . We use the identity

raivi) a ri i 8rai,

valid for any quantities ai and v, indexed with i, to obtain

49



NOLTR 62-193

1 - in+.c -1 n( ~s,) -1 r ii =j r c ii

1-1_ +-4 1 n Y -18 n+l + -

ss

+ ' d 7 K n 18 + n S- nKijj , . ij

where

Sn = - c n 1( U n + d i (8 Kn )X un
ij r ij Xrij rijj r j

By hypothesis (i)I  and inequalities 5.8 and 8.1 ,

10.3 IS I < (c + •

Because of the existence of the boundary, there are i-differences

n+l n+l n+ l
8 u u - u u in right members of equations 10.2 that never
r j ij r j

appear on the left. These are of two types, the first being of those with

indices i c j , s + r; these vanish. The second type is of differences

for which i or X i is on V . We shall speak of the differencesSr r,J

ni-i8 rU I-  of this type, or of the corresponding difference quotients, as being

"situated on", or "on", r Their behavior is controlled by inequality

9.13, which we may reword as

- un
10.4 <Ir jI < A on .5rij - r,j

For 0 < n < T, set
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D'= max t unI , D = max (D', A)
r,i,j rij

From 10.2 and 10.3 we have

10.5 (1+4 0 1 j ) I < ( + kor)D n I + 0 J qDn+l+b'-s r '0 ns'

where b' = b, + M(nr)(cI + kl). Let the quantities

118 n+l
r Uij

take their maximum D'+l say for r = r', i = i', j = j' . If i'

the quantity 10.6 in the left member of 10.5 may be replaced by

Da, ; thus we deduce D' < (l+ko )Dn + b'r andn~l -

10.6 D'I+-< (lI+ko)Dn + b't .

If, to the contrary, i' E , then by 10.4 Dn < A < D : hence,

relation 10.6 holds in any event. This relation also being true when

the left side is replaced by A , we conclude that
W

10.7 Dn+ _ (i + koT)D + b'T
o n

Reasoning as at the end of section 8 proves from this that

k nr b' k n
D <e D + b-(e - 1)

0

while D < max (0I),A) . Thus, estimate 10.1 is completely justified.
0 -l

A bound for 'il ui jn is to be had as follows. First, apply vj Er
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to equation 6.3 deriving difference equations that the difference quotients
-1 nq rUij satisfy. The coefficients in the difference equations are bounded

because of 10.1 . The initial values of the difference quotients are known,

and their boundary values are zero. Then arguing as in section 8, from the

difference equations deduce recursive inequalities for

-i n
En ri ruijI ,

and, from the recursive inequalities, relate En to E . The result is the
n 0

desired bound.

11. Hlder conditions in untruncated problems. Proof of Theorem 3.

Under hypotheses (i-iv) of section 1, any problem has a weak solution,

obtainable (Section 4) as the limit of solutions of truncated problems; if

absolutely continuous with respect to t,xs, s = 1,...,d, in the region

ST - S(o), this solution is strong (Section 1). Here, we shall prove

absolute continuity when hypotheses (i), (i), (iv)l, and (v)i to (v) of
v4

Section 1 are added to the others. Under these added assumptions we shall

show, more specifically, that the (weak) solution of the problem satisfies

a Lipschitz condition with respect to t and H8ider conditions with respect

to xs, s 1l,...,d, that are uniform in the complement

S: !ys1 _ , s l..d

of an arbitrary e-neighborhood of the planes ys = 0, s = l,...,d . This

solution accordingly being a strong solution of the problem, Theorem 3 will be

proved.
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As before, we normalize c by the condition c > 0 .

The Lipschitz condition in t is immediate: by Section 8, such a

condition holds uniformly in the approximating truncated problems, and the

condition of course is preserved in the limit. The Hflder conditions with

respect to x remain to be considered. Since such conditions also are pre-

served under the operation of taking a limit, it will suffice to prove, under

the stipulated assumptions, that the solutions k'n'T(x,y,t) of difference

equations for truncated problems are subject to H61der conditions with respect

to xs, s = l,...,d, that, for y c H C and 0 < t < T , are uniform with

respect to x ~y,t,knT,L. It will be enough, in other words, to find bounds

for 1() )n I r Ci xmm ) that hold for n T < T, jqEH , and all Cpq,-,L.
We shalf do so Under the restriction, for instance, tha% q = O(Ea)

From equations 6.7 we obtain

II.I (1+@ X InH)( o -- l)unl = (1- TXmc n )(2 _l)up n

+-Q Bo Xs -)n + -o Cro -1) l
d m i nj nj

+ T I (P 1)ui + R
r iJjrm r'

Ii'I-<L

where

n -(n-l) n n +(X- l)g + d ( ) n
ij,rm j uij r ii r ij' uij'

Because of the existence of the boundary, there are differences

De - 1)u J1  in right members of the above equations that never appear on
r ij

the left. These are of two types, the first consisting of those for which
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s , 's + r; by the boundary condition, these vanish. The second type

of difference is that for which i or Xri is on rj; Theorem 9.1

estimates this second kind of difference, but not uniformly: hence, reason-

ing of the type of section 10 cannot be used unmodified.

For 0< nT < T, let

rim maxl r n

where max, indicates a maximum taken for such indices i as do not
I

correspond to a boundary value (a value of one of the two kinds discussed

above) of the difference concerned. The boundary values are estimated by

P rim defined in section 9. Hence, for the quantity

n max when J 0
Arim '5Kj m 'Prjm )

=A when j =0rjm r

we have

11.2 t(x- <)ulji An

for all values of the various indices.

(of the form \n co sa t ( ))
A uniform estimate for 6rjm ' r Jm constant (m)a )

according to a previous remark, is out of the question. For any C > 0

satisfying condition 9.5 , such an estimate will be possible, however, for

En max AnJrm rim"

0<Ij j< L
(a+r)
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The process of estimation will involve, as auxiliary quantities besides the

latter,

.Tn

In  max nF
rM J L _ _

(s+r) r

01

in
I =max qI'

rm- Ijsj< L jj rm
(s r) -j

rm r + rm-

Concerning the initial values of the new quantities, it is pertinent to

state

ll.3a to < max (Oiv (b + kM(T))/E) mt
erm - o0o

as follows from Theorem 9.1 and hypothesis (iv)l , and

0 dm
ll.3b I < m + C (m )rm-

a consequence of Theorem 9.2.

The estimation process begins with the observations that

IR I < c'(m) °

ij,rM -

where. c' = M(T)(c + k ) + b , and that

d Xm]Kn ") 1) n I --

In r (')uij' = r ji r +
l_Ij, r o <E% ljr lq>e

(4r)

+term with Jr= O) < 2kIn + k En + 2kj M(T)
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From these and 11.2 , equation 11.1 easily gives us the preliminary in-

equality

< +i m + 2k Irm2+  ,k M(T)

+ k ,n  + c'T(m )a
o erm

If, when Jr n+l be replaced by Pr ' the inequality remainsrjmrm

n~l n+l
good. Hence, A can be replaced by aMe

r rm " Making the replacement and

a consequent cancellation, we arrive at

.n+l n

11.4 jm + t(2k E +c (m) +2q k M(T))
ram rim rm 0 ErM

Summing appropriately over j , we now easily deduce
r

n+l nEISrm+ < In + T(2k s In + Ek - Ec (m()a+ 2njeok M(T))r -rm+ rM o Erm

nand a similar inequality concerning I from both, we have
rm ;fomboh wnhv

11.5 1Ml < (l+2kTE)ln  + Tc(k o En  + c'(m)O + 2qpk M(T))rm - rm r

From 11.4 we also have

11.6 E < (l+k En + ( In + c'(mt) a + 29 E k M(T))Erm - Erm rm

Hence, for

F Fn mx(In En
n rm rm. erm

we can deduce the recursive inequalities
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F n+i< (l + ar)F n + c( )a+ ZoEk M(T)]

where a = (ko + 2k)max (i,e) .By an inductive process like that of

section 8,

F < e flTF + ( -_ ) [ c (xn)a + 2nek M(T)]In0 a

while F can be estimated from 11.3 . The result is a bound for F/(mr.)a,

and thus for CP /(m~)c' depending only on the constants of the problem.Erm
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NOTES

[p.37]/ See the discussion and references in Section 6, Douglis,

On discontinuous solution of quasi-linear, first order

partial differential equations, NAVORD Report 6775, U. S.

Naval Ordnance Lab., White Oak, Md., 22 Jan., 1960.
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